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We study by Monte Carlo simulations a model of a knotted polymer ring adsorbing onto an impenetrable,
attractive wall. The polymer is described by a self-avoiding polygon on the cubic lattice. We find that the
adsorption transition temperature, the crossover exponent �, and the metric exponent � are the same as in the
model where the topology of the ring is unrestricted. By measuring the average length of the knotted portion
of the ring, we are able to show that adsorbed knots are localized. This knot localization transition is triggered
by the adsorption transition but is accompanied by a less sharp variation of the exponent related to the degree
of localization. Indeed, for a whole interval below the adsorption transition, one can not exclude a contiuous
variation with temperature of this exponent. Deep into the adsorbed phase we are able to verify that knot
localization is strong and well described in terms of the flat knot model.
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I. INTRODUCTION

Like other forms of topological entanglement of poly-
meric chains, knots have relevant consequences for both
physics and biology �1�. It is known that they can be found in
long closed macromolecules �2–5�, such as circular DNA �6�,
and that they can affect important physical properties of
them. For example, the migration velocity of circular DNA
in gel electrophoresis depends on the knot type �7�. Among
the various properties of knotted polymers, the determination
of the length of the knots inside them, i.e., the length of the
part of the chain which in some sense “contains” the en-
tanglement responsible for the overall knottedness, has at-
tracted much attention in recent years �8–12�. Indeed, the
length of the knotted portion of the chain can be expected to
play an important role in determining its physical properties.
For example, the diffusion coefficient of knots tied into DNA
by micromanipulation techniques should depend on the av-
erage size of the knots �13�. The action of topoisomerase on
knotted DNA surely depends on how localized the knot is
�14�. The folding dynamics of a knotted protein �15� should
also depend on the size of the knot.

The determination, and even the definition, of the knot
length, for real, three-dimensional �3D� polymers, is, how-
ever, quite difficult. Thus, historically, the problem was first
faced for simplified models in which one imagines that a
knotted polymer ring is confined in two dimensions. In this
way the conformations of the ring reduce to those of a poly-
mer network in 2D. The network is made only of loops and,
under simplifying assumptions, maintains a fixed topology.
These objects are called flat knots �16,17�.

One possible physical realization of flat knots, which al-
lows a link to be traced between them and “real” knots, is the
following. Think of a knotted polymer in 3D, and imagine it
is fully adsorbed on an attractive, flat surface; the polymer
will then become two dimensional, and will consist of loops,
since the original 3D chain was topologically a circle. The
loops are made of segments joined at vertices, which in gen-
eral correspond to overlaps of the adsorbed 3D polymer on

itself. Usually, in the flat knot model the information on the
sign of crossings is not taken into account. One can study the
length of the “knot” inside this object, at least under some
simplifying assumptions: namely, the number of crossings
must be kept constant and at the minimum value compatible
with the corresponding topology in 3D. In fact, in such a
case the network will consist of a fixed number L of seg-
ments, while the knot length � can be unambiguously put
equal to the total length of the L−1 smaller ones. Now, one
basic question about the knot length is whether knots are
localized or not. Knots are said to be localized if, sending the
polymer length N to infinity, their �average� length ��� does
not grow as fast as N. This means that, in the thermodynamic
limit �N→��, the knot will behave as a pointlike object with
respect to the whole polymer. More precisely, the localiza-
tion can be of two types: strong and weak. It is said to be
strong when ��� grows more slowly than any power of N
�e.g., as log�log�N���, while it is weak if ���	Nt, with the
exponent t strictly less than 1 �but larger than 0�. When a
knot is delocalized, ��� grows as fast as N: in this case the
knot will always occupy an extended part of the entire chain.
From the point of view of statistical mechanics, the determi-
nation of the localization behavior of knots is a most inter-
esting issue, since the exponent t is expected to be a univer-
sal �model-independent� quantity. Thus, it is not surprising
that research on knot length has focused on this aspect; this
is true for flat knots as well as for 3D knots, whose study
inherited some terminology, and some ideas, of flat knot
theory. For flat knots, Monte Carlo �MC� simulations, and
theoretical calculations which employ the theory of polymer
networks �18� allow one to make predictions on the value of
t. It turns out that flat knots are strongly localized in the good
solvent regime �17�, but undergo a delocalization transition,
and become delocalized, below the � point �19,20�.

The study of the localization behavior of 3D knots is more
recent, and has been performed employing original strategies
and computer simulations for a consistent statistical defini-
tion of knot length �9,10,12�. Indeed, the analytical treatment
of the statistical mechanics of polymers constrained to have
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the topology of a nontrivial knot is very hard �21�; this is
mainly due to the nonlocal character of the knottedness con-
straint, which makes impossible its description by a local
Hamiltonian, and thus prevents, e.g., the use of standard
field-theoretical techniques. The Monte Carlo results ob-
tained in �10,12� for ��� as a function of N have shown that
prime knots in 3D are weakly localized, in the good solvent
regime, with exponent t	0.72. The weak localization of 3D
knots and the value of t determined in �10,12� for self-
avoiding polygons �SAPs� on the cubic lattice have been
subsequentially confirmed by simulations of off-lattice mod-
els �11�.

Since flat knots should describe fully adsorbed knotted
polymers, they are a useful model per se, and not only for
the indirect, qualitative insights they provide into 3D knots.
Adsorbed polymers are in fact extensively studied �22–24�
and the adsorption transition is an important paradigm of
polymer statistics �22�.

For polymer rings adsorbed on a plane it is known that
knotting can occur, and it has even been proven, for specific
models, that it occurs with probability 1 for infinitely long
chains �25,26�. Thus, the behavior of knots should be ex-
pected to play an important role in determining the physical
properties of adsorbed polymers, as it does for swollen
chains in 3D space. Flat knots represent only an extremely
schematic model of adsorbed knotted polymers. In fact, a
realistic model of an adsorbed polymer is given by a system
consisting of a 3D polymer interacting with a short-range
attractive, impenetrable, plane. It is known �27� that, in the
case of unrestricted topology, this system exhibits a phase
diagram with a desorbed phase at high temperature T and an
adsorbed phase at low T; these two regimes are separated by
a phase transition at a certain critical temperature Tc. At T
=0 the polymer becomes a fully adsorbed 2D object, except
possibly for crossings �which are always present if the topol-
ogy of the polymer is different from that of an unknot�. Thus,
the ground state of real adsorbed knotted polymers should be
described by flat knots; but for any nonzero T, adsorbed
polymers have excursions �i.e., connected bunches of des-
orbed monomers� which can be quite extended, even if they
have finite length on average.

So it is not clear if the true behaviour of real adsorbed
knots for T�0 should be similar to that of polymer networks
of fixed topology, or of their fully three-dimensional coun-
terparts, or, maybe, of something in between. Recent mea-
surements �28�, on samples of knotted DNA adsorbed on a
substrate, indicate that knots are rather localized. However,
the chains in �28� seem not to behave as fully 2D objects. For
example, the measured � exponent is between the 2D and the
3D values. Thus, a full explanation of the behavior of these
polymers may require one to go beyond the simple flat knot
model. The model of adsorbed polymers we are going to
study may be useful in this respect.

In this work we study the adsorption process of knotted
ring polymers by means of Monte Carlo simulations. We
focus on the adsorption transition and the low-temperature
�adsorbed� regime, for the simplest prime knots �31, 41, 51,
and 52�. We check their thermodynamic properties, in order
to trace any significant difference between the behavior of
polymers with a fixed knot type and that of polymers with

unrestricted topology. We estimate the temperature depen-
dence of the average knot length ��� and search for a pos-
sible transition between the T=� regime, where knots are
expected to be weakly localized, and the fully adsorbed one
�T=0�, which corresponds to flat knots and thus to an ex-
pected strong localization.

The paper is organized as follows. In Sec. II we describe
the model and the MC algorithms we use for the simulations.
In Sec. III we present the numerical results and discuss the
knot localization properties in different regimes. We close
this section with a discussion on the relation between knotted
polymers in the strongly adsorbed regime and the model of
flat knots. Section IV contains our conclusions.

II. MODEL AND SIMULATION METHODS

A flexible polymer ring of N monomers close to an im-
penetrable surface can be modeled by an N-step self-
avoiding polygon on the cubic lattice confined to the half
space z�0 and with at least one vertex anchored at the z
=0 plane. To include a short-range attractive interaction be-
tween the surface and the polymer, an energy −1 is assigned
to each vertex of the SAP having z=0 �visit�. Denoting by
v��� the number of visits of a given configuration � the
equilibrium properties of the model are described by the par-
tition function

ZN�T� = 

���

ev���/�BT. �1�

where T is the absolute temperature and kB is Boltzmann’s
constant. If the sum in Eq. �1� extends to configurations �
with all possile topologies, this model displays, in the ther-
modynamic limit, a second-order phase transition from a de-
sorbed �high-T� phase to an adsorbed one �low T� �22,23�. In
particular, there exists Tc�0 such that the limiting free en-
ergy

F�T� = lim
N→�

N−1 log ZN�T� �2�

is equal to −log Kc
o, independent of T, for all T�Tc and is

strictly greater than −log Kc
o for all T	Tc �29�. The limiting

value Kc
o denotes the critical fugacity of standard, noninter-

acting 3D SAPs �30�, that is, the smallest value of the step
fugacity K for which the generating function

G�T,K� = 

N=1

�

ZN�T�KN �3�

diverges. Let �v� be the average number of visits and


�T� = lim
N→�

�v�
N

�4�

the limiting fraction of visits. Then for all T�Tc, 
�T�=0
�desorbed phase�, and for all T	Tc, 
�T��0 �adsorbed
phase�. Right at the transition temperature T=Tc�3.497 �27�
one expects


�Tc� � N�−1, �5�

where � is the crossover exponent which is believed to be
very close to 1/2 �27�. Another way to detect the adsorption
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transition is by looking at the metric exponent � that controls
the scaling of the radius of gyration through the power law

�Rg� � N�. �6�

Indeed, for T�Tc one expects ��0.588, i.e., the value for
3D SAPs �23�, while for T	Tc the value �=3/4 of 2D SAPs
�23� should be recovered.

The adsorption transition is one of the most succesfully
studied transitions in the polymer literature �22,23�, but if
one restricts the sum of the partition function �1� to SAPs
with a given knot type very few results are available so far.
One of these is the rigorous, strict, bound

F��T� 	 F�T� ∀ T � 0, �7�

where F��T� is the limiting free energy �1� restricted to the
set of unknotted SAPs �25,26�. Inequality �7� implies that for
every finite value of T the probability that the polygon is
knotted goes to 1 as N goes to infinity �25,26�. The only
exception would be the set of SAPs lying completely on the
plane z=0 �2D SAPs�, i.e., the zero-temperature limit for
adsorbing rings. Of course, the knotting probability for finite
N will depend on T and this has been investigated numeri-
cally �26�. No further studies have been performed so far on
the effect of topological constraints on the adsorption transi-
tion but some reasonable assumptions can still be made. For
example, one should expect that universal exponents such as
the crossover exponent � and the metric exponent � do not
depend on topological constraints. On the other hand, the
critical temperature Tc could change when switching from
the unrestricted to a restricted topology ensemble, but there
is no strong theoretical insight into what should happen.
Also, we cannot tell whether Tc should depend on the spe-
cific knot type or not. Given the difficulty in making any
progress in this problem by analytical or rigorous means, a
natural way to gain insight is by Monte Carlo simulations.

For a fixed temperature T, SAPs with a fixed knot type are
generated by using a Monte Carlo approach based on the
BFACF algorithm, �31�. This is an algorithm which samples
along a Markov chain in the configuration space of polygons
of variable N and with fixed knot type. The statistical en-
semble considered is thus grand canonical, with a fugacity K
assigned to each polygon step. We adopt this algorithm be-
cause it preserves the topology and is irreducible within each
set of configurations having the same knot type �32�. At a
given T we used a multiple Markov chain �MMC� procedure
�33� in which configurations are exchanged among en-
sembles having different step fugacities �34�. This is done in
order to improve the efficiency of the sampling, especially at
low T where the SAPs are strongly adsorbed on the plane.
The temperatures we considered are T=3.50	Tc and T
=1.25, 2.00, and 2.75, all much less than Tc. We also con-
sider the value 1/T=0 �noninteracting case� in order to com-
pare it with the known situation of unweighted and geometri-
cally unrestricted SAPs in 3D �10,12�.

Despite the use of the MMC sampling technique, the
BFACF algorithm becomes quite inefficient in the strongly
adsorbed phase and for high values of N. To improve the
sampling in this regime, we decided to use a hybrid scheme
based on a combination of the BFACF with the pivot algo-

rithm �35�. Since any pivot move can change the knot type of
the resulting SAP �36�, a check of its topology is needed
before the move itself can be accepted. This is done by cal-
culating the Alexander polynomial ��z� in z=−1 and z=−2
�37,38�.

The BFACF algorithm does not preserve the value of N.
Thus, in order to extract canonical averages at fixed N, we
bin the data according to their N value. To collect enough
statistics for a given N we used bins of width 10. In this
respect the symbol � 2� indicates for us averages taken within
a bin centered in N and with size 10. The knot types consid-
ered in the simulations are the prime knots 31, 41, 51, and 52.
However, most of the results we present here refer to the
trefoil knot �31�.

For each sampled SAP the length � of the hosted knot � is
measured by determining the shortest possible arc that con-
tains the knot. The procedure works as follows �10,12�.
Given a knotted configuration, open arcs of different length
are extracted by employing a recursive procedure. Each arc
is then converted into a loop by joining its ends at infinity
�i.e., at very far dinstance� with a suitable path. The presence
of the original knot is finally checked by computing, on the
resulting loop, the Alexander polynomial ��z� in z=−1 and
z=−2 �see �12� for details�. In all the simulations considered
we sample, for each value of K, over 20 000 �independent�
configurations. Since for fixed T a MMC scheme with ten
different K values is used, the total number of configurations
considered in the statistics of a given T amounts to 2105.

III. RESULTS

A. Desorbed phase

To check the validity of our approach we first compare the
known situation of 3D swollen SAPs �10,12� with the one of
SAPs confined in the upper half space by an impenetrable
nonattractive plane �noninteracting case�. Since the con-
straint z�0 should not play a significant role in knot local-
ization, we expect strong similarities between the two cases.
A first interesting issue concerns the value of Kc for the
noninteracting and confined problem compared to the one
�Kc

o� of the 3D case. For the whole class of SAPs �unre-
stricted topology� it is known that Kc=Kc

o �29�. This result is
obtained simply by translating each polygon in the bulk until
the confining plane coincides with the bottom plane of the
polygon. A similar argument can be used here for polygons
with fixed knot type giving �up to the existence of Kc����
Kc���=Kc

o��� for all fixed knot types �. This is indeed con-
firmed by our numerical results based on a MMC with ten
different K’s ranging from K=0.2109 up to 0.2130 �39�
which give good evidence �within the confidence limit and
for the prime knots considered� that Kc���=Kc

o���=Kc
o �40�.

We also confirm that at T=� the metric exponent � coincides
�within error bars� in the two cases and that it is independent
of the knot type �we estimate �=0.59±0.01 for all knots
considered�. We now turn out attention to the behavior of the
average knot length ��� as a function of N. Previous studies
have shown that for 3D swollen knotted SAPs
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��� = ANt + o�Nt� , �8�

with t�0.72 for the trefoil �10,12�. Do we have the same
behavior if the 31 SAPs are confined into one half space by
an impenetrable �but still not attractive� plane? This seems to
be the case as witnessed by Fig. 1 where a log-log plot of ���
as a function of N is reported for the two situations. The two
curves look indeed linear and parallel to each other, confirm-
ing a weak localization regime with an exponent t that is the
same �within error bars� in the two cases.

B. Adsorbed phase

When the attractive interaction between the SAP and the
plane is switched on, the entropy is no longer the only ingre-
dient in determining the equilibrium properties of the system.
Instead, equilibrium is determined by the interplay between
entropy and the energy gain in flattening the polymer on the
plane. Moreover, when the topology of the ring is restricted
to a fixed knot type, an additional entropic effect arises, be-
cause the entropies of rings with fixed topology and of rings
with unrestricted topology are different.

From a numerical point of view, simulations of SAPs in
the adsorbed regime require more effort than those for the
desorbed one. Let Kc�T �� be the critical fugacity for adsorb-
ing SAPs at temperature T and with knot type �. For T�Tc
�desorbed regime�, one can extend the argument given above
for the nonadsorbing plane and show �up to the existence of
the limiting free energy� that Kc�T ��=Kc���=Kc

o���. On the
other hand, for T	Tc �adsorbed phase�, Kc�T �� should de-
crease as the temperature decreases �41�, and one cannot rely
any more on a known value of Kc for simulations at a given
T. Hence, for each value T	Tc considered, the value of
Kc�T �� must be estimated first �by short MC runs� before
collecting a significant amount of data for that temperature.

Figure 2 shows the average knot size ��� as a function of
N for SAPs with a trefoil knot tied in. Different curves cor-

respond to different temperatures ranging from T=3.50, a
value just above the adsorption transition for the unrestricted
case, down to T=1.25, a value deep into the adsorbed phase.
The plot in the noninteracting case is also reported for com-
parison. One can notice that the N behavior of ��� for SAPs
close to the adsorption point T=3.5 coincides with the one
obtained for the noninteracting case. Since the adsorption
point is the last point of the desorbed phase, this result shows
that in this phase knots are weakly localized with an expo-
nent t that does not depend on T, and coincides with the one
found for 3D SAPs. Below the adsorption transition the situ-
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FIG. 3. �Color online� Finite-size scaling analysis of the expo-
nents t�q� for T=1.25. For each value of q �q increases monotoni-
cally from bottom to top�, t�q� is obtained by fitting the data of ��q�
as a function of N with a power law in the range between Nmin and
Nmax=1500, with Nmin�Nmax. Here, different curves, corresponding
to different values of q ranging from q=1.00 �bottom curve� to q
=4.00 �top curve�, are shown. To extract the asymptotic values we
compute t�q� as a function of Nmin and extrapolate these values as
1/Nmin→0: This gives our best estimate of t�q�.
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FIG. 1. �Color online� Average knot length ��� as a function of
N for SAPs in the bulk �bottom curve� and for knotted SAPs con-
fined in the z�0 half space �top curve�. In both cases the hosted
knot is the trefoil knot �31�. ���	Nt holds in both cases with t
=0.73±0.03. This value is consistent with that estimated for 3D
SAPs in the bulk �10,12�.
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FIG. 2. �Color online� Average knot length ��� as a function of
N for SAPs with knot 31. Different curves correspond to decreasing
�from top to bottom� values of the temperature. The dashed curve
corresponds to the noninteracting case. The corresponding values of
t can be deduced from the values of c reported in Table II.
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ation changes significantly: the average knot length still fol-
lows a power law behavior �8� with N, but the exponent t
decreases as T decreases. More interestingly, if we go deeper
into the adsorbed phase �T=1.5,1.25� and look for suffi-
ciently large N, ��� tends to a constant value. This is a signal
of a strong localization regime �t=0�, reminiscent of the one
found for flat knots �17�.

Clearly, if t=0, Eq. �8� does not give any insight into the
degree of localization of knots. More detailed information
can be obtained, however, by analyzing the N behavior of the
probability distribution function �PDF� of the knot length,
P�� ,N� �12�. In analogy with previous works on similar
problems �12,42,43� one can assume the following scaling
form:

P��,N� = �−cg��/ND� , �9�

where the scaling function g is expected to approach zero
rapidly as soon as ��ND, �D�1�. The quantity ND is a
cutoff on the maximum value � can assume. We expect D
=1, because there is no reason a priori to think that there
exists some “topological cutoff” which limits the size of the
knot. This is confirmed by our measurements, which yield
D	0.9–1 at every T. Assuming g is integrable when its
argument is sufficiently large, one can deduce that, for 0
	 t�1, c=2− t, while c�2 always implies t=0. In this re-
spect the desorbed phase �where t�0.75� is characterized by
c=1.25 �10�, while at T=0 �fully adsorbed polymer� we
could expect c=2.69, i.e., the value found for flat knots �17�.

A common technique to analyze the scaling of the PDF
�9� goes as follows. For a trial value of c and fixed N, one
plots P�� ,N��c versus � /ND. Clearly, by varying N, different
curves are displayed but if the values of c and D are close to
the correct ones, all these curves should collapse onto a
single one described by g. Eventually, after several trials,
“optimal” values of c and D can be estimated. Unfortunately,

to have a good matching of the curves, extremely good sta-
tistics are required, and this would not be feasible in this
context.

We can instead perform an analysis based on the scaling
behavior of the moments of the PDF in Eq. �1� �44�. This
method relies on the following consideration: given the scal-
ing behavior �9� for the PDF, its qth moment �q�0� should
obey the asymptotic law

��q� =� �q−cg��/ND� � NDq+D�1−c� � Nt�q�, �10�

and the two parameters D and c can be deduced by fitting the
estimated exponents t�q� against the order q �45� and per-
forming a finite-size scaling analysis �see Fig. 3�.

As shown in Fig. 4 for the T=1.25 case, the plots of t�q�
show deviations from linearity at relatively low q, due to
finite-N scaling correction effects. This is typical for this
kind of analysis �44�. However, for a sufficiently wide range
of q, a linear behavior can be identified whose intercept gives
an estimate of c.

Repeating the above procedure for the different tempera-
tures considered one obtains the estimates plotted in Fig. 5
and reported in Table I.
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FIG. 4. �Color online� Analysis of the moments of the PDF
P�� ,N� for T=1.25 and for the knot 31. The exponents t�q�, calcu-
lated as described in the caption of the previous figure and in the
main text, are plotted against q. For q�2.5 a good linear behavior
is obtained and a linear fit in that range of q gives the estimate of c.
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FIG. 5. �Color online� Estimated values of the exponent c for
SAPs at the adsorption transition �T=3.5� and in the adsorbed phase
�T	3.5�. The knot considered is the trefoil. For T�Tc, we get c
=1.27±0.03, independently of T �desorbed phase� This is consistent
with c=2− t and the expected value �t�0.75� found in this regime.

TABLE I. Estimates of the exponent c for different values of T
for trefoil knots. They have been obtained by the finite-size scaling
analysis of the moments of the knot length as explained in the text.

T c

3.50 1.27±0.03

2.75 1.55±0.05

2.00 1.80±0.05

1.50 2.42±0.10

1.25 2.55±0.10
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For T�Tc the value of c is roughly 1.25 independent of
T. This is consistent with the findings presented in the pre-
vious section. Indeed, in the desorbed regime �and up to the
adsorption point included� the knot length exponent t is
�0.72. As the temperature is lowered the polymer goes more
deeply into the adsorbed phase and the c exponent increases,
reaching, at T=1.25, the value c=2.55±0.10. The curve in
Fig. 5 furnishes good evidence that knots in the adsorbed
regime become strongly localized. The value of c at T
=1.25 �2.55� agrees within the error bars with the value 2.69
found for flat knots, but it is possible that such value is
reached precisely only in the T→0 limit.

One could take the intersection between the curve in Fig.
5 and the line c=2 as an estimate of a transition point Tloc
between the weak and the strong localization regimes. This
would suggest a localization transition occuring well below
the adsorption transition. On the other hand, the curve in Fig.
5 is an estimate of c�T� that relies on finite-N simulations and
it is hard to decide whether c�T� would show a sharp discon-
tinuity as N→�. Most intriguing would be the possibility of
a range of temperatures in which the exponent c varies with
T.

Results for other prime knots are quite similar to those
presented for the trefoil knot. Figure 6 shows, for example,
the estimates of t�q� for 41, 51, and 52 deep in the adsorbed
phase �T=1.25� compared with the one found for 31. All the
curves look quite similar, and by performing a linear ex-
trapolation we obtain the estimates of c given in Table II.

The estimated exponents are well compatible, within error
bars, with each other

C. Equilibrium behavior of the knotted arc

Having established that the adsorption transition drives
knots from being weakly localized to being strongly local-
ized, it is now interesting to understand whether the knot
behaves like the rest of the chain. In fact, one may wonder if
the typical equilibrium configurations in the various phases

are the ones in which the knotted part is expelled out of the
plane, so that the knot is free to fluctuate in the bulk. This
can be checked by comparing, for example, the average
height �z� of the whole SAP, �z�, to the one restricted to its
knotted part, �zknot�. Figure 7 shows the N dependence of �z�,
and �zknot�, at two values of the temperature. At T=3.5 �left
panel� the two average heights are practically identical sug-
gesting that, above the adsorption transition, the knotted part
is indistinguishable from the hosting ring. This behavior
seems to change at T=1.25 �deep adsorbed phase�, where �z�
is systematically lower than �zknot�. This could indicate that
in the adsorbed regime the knotted part tends to be, on aver-
age, further away from the adsorbing plane than the whole
chain. Note, however, that, even in the strongly adsorbed
phase, the knotted part must keep a minimal number of ex-
cursions, in order to connect the minimal number of cross-
ings required by its topology. It turns out that this minimal
number of excursions is sufficient to explain the differences
shown in Fig. 7 �right panel�. This can be seen as follows. By
simulationing unknotted rings at T=1.25 with N	76 mono-
mers �which is roughly the equilibrium length of the 31 knot
at that temperature�, we observe that the average number of
monomers in the excursions is �b��32. On the other hand,
the knotted portion of a knotted ring at the same temperature
has �b��42. In both cases, almost all excursions have height
z=1. Hence the knot has, on average, �10 more monomers
in the bulk with respect to tis unknotted counterpart. This is
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FIG. 6. �Color online� Estimates of the exponent t�q� as a func-
tion of q for T=1.25 and for different prime knots. The error bars,
that are not reported here for clarity, are of the same order as the
ones reported for 31 in Fig. 4.

TABLE II. �Color online� Estimates of the exponent c for dif-
ferent prime knots at T=1.25.

Knot type c

31 2.55±0.10

41 2.60±0.10

51 2.55±0.10

52 2.56±0.16
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FIG. 7. �Color online� Average height �z� of the SAP and of its
knotted counterpart ��zknot�� as a function of N. The left panel refers
to T=3.5 �desorbed phase� while the right one to T=1.25 �strongly
adsorbed phase�.
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in agreement with the discrepancy observed in Fig. 7 �right
panel�. This difference is then due only to the unavoidable
crossings pertaining to the knot. In fact each crossing re-
quires at least three excursions of length 3 each, resulting in
a minimal excursion length 33=9	10 for the knotted
part. Similar considerations apply to different knot types.
This suggests that the knotted parts of a polymer are essen-
tially no more desorbed than the rest of the chain.

Given that the position of the knot within the chain and
with respect to the adsorbing plane has nothing special if
compared to any remaining part of the chain, it is reasonable
to expect that the equilibrium properties themselves, once
restricted to the knotted part, will display the same features
as those of the whole chain. To confirm this picture we esti-
mate the average number of visits as a function of N for the
knotted part and compare it with that of the whole polygon
�Figs. 8 and 9�. The temperature considered is the adsorption
temperature Tc where the scaling behavior �5� with ��1/2
is known to hold for all rings �unrestricted topology�. By

performing a simple power law fit we indeed get �
= �0.53±0.02� for the whole knotted SAP. Note that the esti-
mate is for SAPs with fixed knot type, suggesting that the
crossover exponent could be unaffected by topological con-
straints. To compute a crossover exponent restricted to the
knotted part, the scaling 5 must be replaced by

�vknot� � ����knot, �11�

where �vknot� indicates the number of visits of the knotted
part of the ring. This gives �knot= �0.49±0.04�, compatible
with �=�knot=1/2.

Similarly one can define the metric exponent of the knot-
ted portion of the chain, �knot as

�Rknot� � ����knot. �12�

The estimates are reported in Table III and compared with
those for the whole chain.

The �knot determinations are always slightly higher than
those of � and have slightly larger error bars. This is due to
two effects: � varies on a smaller range than N, and the data
for Rknot are noisier too. The measured values of �knot are,
however, comparable, within error bars, with the values of �
for the whole SAP. At very low T, when knots become
strongly localized, the error bars on the estimates of �knot are
quite big. This is mainly due to the relatively small values of
��� �between 16 and 100� which do not allow a good
asymptotic analysis of �12�.

D. Are adsorbed knots behaving as flat knots?

Our results show that the degree of localization of prime
knots appear to be independent on the knot type �see Table
II�. This is consistent with the theory of flat knots which
shows that, at leading order, all prime knots can be asymp-
totically described by the figure 8 graph reported in Fig. 10,
whose behavior in the good solvent regime determines their
strong localization �17�. However, adsorbed knots do not
show the same degree of localization �measured by the ex-
ponent c presented above� as flat knots. In fact, they are
always somehow less localized, i.e., they show values of c
lower than that provided by flat knot theory. Note, however,
that for T=1.25 the c values for adsorbed and flat knots are
comparable within 2 standard deviations. On the other hand,
since the Monte Carlo procedure deteriorates as T decreases,
it would not be useful to try to go deeper in the adsorbed
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FIG. 8. �Color online� Average number of visits �v� of the whole
SAP �top curve� and its knotted part �bottom curve� as a function of
N. The temperature considered is T=3.50	Tc. The dashed line is
still the one for the knotted one but now multiplied by �N /���.
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FIG. 9. �Color online� Average number of visits of Fig. 8 scaled
by L where L=N for the whole SAP and N0.72 for the knotted part.

TABLE III. Estimates of the exponent � for different values of T
for trefoil knots. They have been obtained by a finite-size scaling
analysis of Eqs. �6� and �12�.

T � �knot

� 0.59±0.01 0.61±0.03

3.50 0.60±0.01 0.64±0.03

2.75 0.75±0.01 0.75±0.03

2.00 0.75±0.02 0.77±0.04

1.50 0.75±0.02 0.81±0.06

1.25 0.74±0.02 0.81±0.06
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phase. Indeed, at low T’s, the estimates of c would be af-
fected by error bars so large to make them not very signifi-
cant.

We can then conclude that strongly adsorbed polymers
should eventually behave as flat knots. If this happens at
some T* with 0	T*	Tc or just in the limit T→0 it is,
however, impossible to establish within our numerical preci-
sion.

Another distinction between adsorbed knotted rings and
flat knots concerns the number of crossings C, the chain
makes with itself when it is regularly projected on the ad-
sorbing plane �46�. Indeed, in the flat knot model the number
of crossings is minimal �three for the 31, four for 41, etc.�.
This is crucial for the analytical treatment of the model and it
would be interesting to see how close is the behavior of the
strongly adsorbed rings to this assumption.

It turns out that while the average number of crossings �C�
of the whole chain increases �approximately linearly� with N,
the same quantity restricted to the knotted portion is approxi-
mately constant and close to the minimum value allowed by
the topology. For example, �C31

��3.6. The independence of
N is quite reasonable since deep into the adsorbed phase
knots are strongly localized. Moreover, strongly adsorbed
rings tend to minimize their energy by maximizing the num-
ber of visits and, in the limit T→0, we should expect all the
unimportant crossings to disappear leaving a 2D ring with
just the essential �topological� crossings defining the knot
�47�.

At T�0, however, fluctuations in the number of crossings
are present and this could explain the deviation of the c
exponent from the flat knot value for finite T values. In this
respect, it could be useful to study the behavior of flat knots
when the restriction on the minimal crossing number is re-
laxed. Recently, Guitter and Orlandini �16� introduced a
model of flat knots on a lattice where the ring is a 2D poly-
gon with a number of crossings which can be changed and
tuned with an appropriate crossing fugacity. By implement-
ing our knot detection technique on this model, we have
estimated the average knot size for flat knots as a function of
N for a wide range of values of the average crossing number.
We find that flat knots are always strongly localized, inde-
pendently of the average crossing number. This suggests that
the crossing number is not a key feature to explain the value
of c and that the flat knot model, even with a fluctuating
number of crossings, is not a fair model for knotted rings in
the adsorbed phase unless T→0.

IV. CONCLUSIONS

In this paper, we study by Monte Carlo simulations the
equilibrium properties of self-avoiding polygons with fixed

topology �knot� adsorbing onto an impenetrable wall. For
unrestricted topology it is known that SAPs undergo an ad-
sorption transition from a desorbed 3D swollen phase to an
adsorbed phase. We first show that for SAPs with fixed to-
pology the adsorption transition is still present. Moreover,
we give numerical evidence that the metric exponent � in the
adsorbed and desorbed phases and the crossover exponent �
for SAPs with fixed topology, agree with the ones for the
unrestricted topology case. Even nonuniversal quantities
such as the critical adsorption temperature Tc and the critical
fugacity Kc

o seem to be unaffected by the topological con-
straint.

By using an algorithm that allows the identification of the
knotted portion of the SAP �10� we are able to focus on the
equilibrium critical properties of this portion and compare
them with those the whole SAP. We show that the knotted
part behaves, in most respects, as any other connected subset
of the ring with the same length. For example, we find that at
T=Tc the average energy of the knot scales as ���� where the
value of � agrees with that of the whole ring. The metric
exponent of the knot �knot, which describes the scaling of the
radius of gyration of the knotted part of the ring as a function
of the knot length, is also consistent with the value of � of
the whole chain at every temperature. Furthermore, the av-
erage displacement of the knot from the plane �height� is the
same of that of the whole ring, indicating that there is not a
preferred height in space for the knotted portion.

The main emphasis of our work is, however, on the local-
ization behavior of the knotted portion of the ring as T var-
ies. We find that, for T�Tc, the average length ��� of the
knotted portion grows as Nt where t�0.72, consistent with
the value found in �10,12� for knotted rings in the 3D bulk.
This shows that knots in the desorbed phase and right at the
adsorption transition are weakly localized, i.e., the presence
of an attracting impenetrable plane does not change the lo-
calization properties of the knot. Below Tc, the knot becomes
more and more localized, reaching a strong localization re-
gime deep into the adsorbed phase. This crossover to more
localized states is certainly triggered by the adsorption tran-
sition, but is quite smooth, as witnessed by the T dependence
of the estimated localization exponent t. Thus, we can not
exclude that below Tc there is a continuous variation of the
exponent t with T. A possible alternative scenario is the ex-
istence of a sharp localization transition at some Tloc	Tc,
such that t has the bulk value for T�Tloc, while t=0 �and
c=2.69� below. To justify this latter scenario, one must as-
sume that our data are affected by strong finite-size correc-
tions, which cannot be numerically detected unless one per-
forms simulations at much larger values of N. Note,
however, that, even under this assumption, the possibility
that Tloc=Tc should be discarded on account of the observa-
tion that t starts to decrease only below Tc; a crossover re-
gion is expected to be more symmetric around the transition
temperature Tloc. For sufficiently low values of T �deep in the
adsorbed phase� the estimated c exponent agrees, within er-
ror bars, with the one found for flat knots. However, due to
the large statistical uncertainty we cannot rule out the possi-
bility that the flat knot regime is reached only in the limit
T→0.

These results suggest that the relation between the flat
knot model and adsorbed knots is nontrivial. The flat knot

FIG. 10. Sketch of the figure 8 graph. Here L is the total length
of the ring while � is the length of the shorter loop, which can be
identified with the knot length �. It can be shown �17� that, when
L��, the PDF for � scales like �−c8, with c8=2.69.
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regime is reached only at low enough T �or possibly at T
→0� where the number of crossings, arising from a regular
projection on the adsorbing plane, is close to the minimal
value dictated by the topology. On the other hand, in the
whole adsorbed phase many excursions in the bulk are al-
lowed and give rise to a number of crossings that exceed the
minimal one and that can fluctuate widely as N increases.
These fluctuations are certainly responsible for the deviations

from flat knot behavior observed at high enough T. The flat
knot model is certainly not an adequate representation of
knotted rings in the whole adsorbed phase.
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